

Figure 2. ¹H NMR spectra of the PhCH₂ protons as a function of temperature of a crystalline sample of $(i-PrO)_3Mo \equiv Mo(CH_2Ph)_2(O-i-Pr)(PMe_3)$ dissolved in toluene-d₈. At -20 °C the PhCH₂ protons appear as an ABX spectrum (X = ³¹P) with the downfield portion of the spectrum partially obscured by the septet of the $(i-PrO)_3Mo \equiv$ methyne protons (*). Upon raising the temperature the growth of the singlet (C) at ca. 4.1 ppm corresponds to the increase in concentration of $(i-PrO)_2(PhCH_2)Mo \equiv Mo(CH_2Ph)(O-i-Pr)_2$. The signals arising from the PhCH₂ protons of the $(i-PrO)_3Mo \equiv Mo(CH_2Ph)_2(O-i-Pr)(PMe_3)$ molecule decrease in intensity as the former grows (C) and coupling of A/B to ³¹P is lost indicating rapid reversible loss of PMe₃ at +60 °C. Spectra

(1) Å. Also the Mo-O distances at the 3- and 4-coordinate ends of the molecule are comparable to those seen in Mo₂(OCH₂-t-Bu)₆ and Mo₂(O-i-Pr)₆(py)₂, respectively. The long Mo-P distance is consistent with its lability toward PMe₃ dissociation (vide infra). The Mo-C distances are longer than those in 1,2-Mo₂-(CH₂Ph)₂(NMe₂)₄,⁹ but the increase in Mo-C distance is comparable to that seen previously in going from 3- to 4-coordinate molybdenum, c.f., Mo-C = 2.16 (1) Å in 1,2-Mo₂Et₂(NMe₂)₄¹⁵ and Mo-C = 2.21 (1) Å in Mo₂Et₂(NMe₂)₂(PhN₃Ph)₂.¹⁶

The ¹H NMR spectrum¹¹ of a crystalline sample of (*i*-PrO)₃Mo \equiv Mo(CH₂Ph)₂(O-*i*-Pr)(PMe₃) dissolved in toluene- d_8 at -20 °C is entirely consistent with expectations based on the observed molecular structure allowing for rapid rotation about the Mo-Mo bond. Ther are two types of O-*i*-Pr ligands in the ratio 1:3, and the methylene protons of the benzyl ligand are diastereotopic and appear as part of an ABX spin system (X = ³¹P). When the temperature is raised, the spectrum changes and is interpretable in terms of PMe₃ dissociation and the equilibrium shown in eq 1.

 $(i-\Pr O)_{3}Mo \equiv Mo(CH_{2}Ph)_{2}(O-i-\Pr)(PMe_{3}) \rightleftharpoons (i-\Pr O)_{2}(PhCH_{2})Mo \equiv Mo(CH_{2}Ph)(O-i-\Pr)_{2} + PMe_{3}$ (1)

The temperature dependence of the equilibrium is easily followed in the $PhCH_2$ region of the NMR spectrum as shown in Figure 2. It is tempting to attribute the stability of the PMe_3 adduct to the favorable binding of the soft P donor ligand to the soft (i.e., bis-alkylated) molybdenum center.

The present findings provide the first observation of facile, reversible alkyl/alkoxy exchange at a $(Mo=Mo)^{6+}$ center. These are of obvious relevance to previous findings of Rothwell and co-workers^{17,18} and are of potential importance when one considers viable mechanisms for dinuclear reductive eliminations¹⁹ which convert M-M triple to M-M quadruple bonds.^{20,21}

Further studies are in progress.²²

Registry No. 1,2-Mo₂(CH₂Ph)₂(NMe₂)₄, 82555-51-9; 1,2-Mo₂-(CH₂Ph)₂(O-*i*-Pr)₄, 91443-57-1; (*i*-PrO)₃Mo \equiv Mo(CH₂Ph)₂(O-*i*-Pr)-(PMe₃), 91466-42-1.

Supplementary Material Available: Listing of atomic coordinates and isotropic thermal parameters (1 page). Ordering information is given on any current masthead page.

(17) Compounds of the X₂RMo=MoR₃ and XR₂Mo=MoR₂X where X = O-t-Bu or NMe₂ do not isomerize in toluent-d₈ solution: Chisholm, M. H.; Folting, K.; Huffman, J. C.; Rothwell, I. P. Organometallics **1982**, 1, 251.

(18) The conversion of $L_3Mo \equiv MoL_3$ compounds to $L_3Mo(\mu-L)_3MoL_3$ compounds has been noted: Coffindaffer, T. W.; Rothwell, I. P.; Huffman, J. C. *Inorg. Chem.* **1983**, *22*, 3178.

(19) Trinquier, G.; Huffman, R. Organometallics 1984, 3, 370.

(20) Chisholm, M. H.; Folting, K.; Huffman, J. C.; Tatz, R. J. J. Am. Chem. Soc. 1984, 106, 1153.

(21) Chisholm, M. H.; Chiu, H. T.; Huffman, J. C. Polyhedron 1984, 3, 759.

(22) We thank the Department of Energy, Office of Basic Research, Chemical Sciences Division and the Wrubel Computing Center for financial support.

Dibenzyl- and

Dineopentyltetrakis(propionato)ditungsten($M \equiv M$). Axial Ligation and Unprecedentedly Short W-W Distances for the RW \equiv WR Unit

Malcolm H. Chisholm,* David M. Hoffman, John C. Huffman, William G. Van Der Sluys, and Steven Russo

> Department of Chemistry and Molecular Structure Center, Indiana University Bloomington, Indiana 47405 Received March 19, 1984

Of all the compounds containing multiple bonds between metal atoms,¹ the d³-d³ dimers of molybdenum and tungsten show the most varied and fascinating coordination chemistry. There are compounds with M-M triple bonds of configuration $\sigma^2 \pi^4$ in which the metal atoms are each coordinated to three, four, five, and even six ligand atoms.^{2,3} Though *ligands* may span the two metal atoms, there are no bridging *atoms* in this group of d³-d³ dimers. However, compounds with bridging atoms are known as in

⁽¹⁵⁾ Chisholm, M. H.; Haitko, D. A.; Folting, K.; Huffman, J. C. J. Am. Chem. Soc. 1981, 103, 4046.

⁽¹⁶⁾ Chetcuti, M. J.; Chisholm, M. H.; Folting, K.; Haitko, D. A.; Huffman, J. C. J. Am. Chem. Soc. 1982, 104, 2138.

⁽¹⁾ Cotton, F. A.; Walton, R. A. In "Multiple Bonds Between Metal Atoms"; Wiley: New York, 1982.

⁽²⁾ Chisholm, M. H.; Cotton, F. A. Acc. Chem. Res. 1978, 11, 356.

⁽³⁾ Chisholm, M. H. Faraday Soc. Symp. 1980, No. 14, 194.

Figure 1. ORTEP view of the centrosymmetric W₂(CH₂Ph)₂(O₂CEt)₄ molecule. Pertinent bond distances (Å) and angles (deg), averaged where appropriate, are W–W = 2.186 (1), W–C = 2.18 (1), W–O = 2.084 (9), O–C = 1.28 (1), W–W–C = 178.7 (4), W–C–C = 113.2 (7), W–W–O = 90.5 (2), W-OC = 119.4 (9), O-CO = 120.4 (8).

 $W_2Cl_6(py)_4^4$ and $M_2X_9^{3-}$ salts (X = Cl, Br)⁵ which adopt structures based on edge- and face-shared octahedra, respectively. Within the former group of compounds, the M-M triple bond, $\sigma^2 \pi^4$, is cylindrical and does not exhibit a preference for staggered or eclipsed geometries with respect to each end of the molecule.⁶ The observed conformations are determined by ligand interactions across the M-M bond. The compounds $W_2Me_2(O_2CNEt_2)_4$ and $W_2(O_2CNMe_2)_6$ provide the only structurally characterized examples of compounds where the metal atoms are coordinated to five and six ligand atoms and adopt the structures depicted by I and II. Near-eclipsed geometries result from the presence of

a pair of O_2CNR_2 ligands that span the W=W bond.

Within the series of structurally characterized compounds of formula $X_n M \equiv M X_n$, where $M = M \circ or W$, X = a ligand atom, and n = 3-6, we see an apparent reluctance to form bonds colinear with the M-M axis. Only in $W_2(O_2CNMe_2)_6$ (II) is weak axial ligation observed: W---O = 2.67 Å. We describe here a new type of geometry for d^3-d^3 dimers of tungsten where strong axial ligation is observed and results in extremely short W-W distances.

Following our discovery of a general synthesis of ditungsten carboxylates by reductive-elimination (alkyl group disproportionation), eq 1,8 we extended our studies to alkyl groups lacking

 $W_2R'_2(NMe_2)_4 + 4RCOOCOR - \frac{1}{W_2(O_2CR)_4}$ $\mathbf{R}' = \mathbf{Et}, \mathbf{Pr}, \mathbf{Bu}$

+ 4RCONMe₂ + alkene + alkane (1)

Figure 2. Schematic drawing showing the derivation of the molecular orbitals of the d^3-d^3 dimer $\tilde{R}X_4MM\tilde{X}_4R$ (right), from the molecular orbitals of a RX₄M fragment (left).

 β -hydrogen atoms. This has allowed isolation of crystalline, air-sensitive compounds of formula $W_2R'_2(O_2CEt)_4$, where R' = CH₂Ph and CH₂-t-Bu.9

A variety of carboxylic anhydrides and R' groups can be envisaged for reactions of this type. Our initial choice of propionic anhydride and $\mathbf{R}' =$ benzyl was motivated by a desire to seek an alternate synthesis of the structurally characterized $W_2(O_2CEt)_4$ compound, and indeed $W_2(CH_2Ph)_2(O_2CEt)_4$ upon photolysis in hydrocarbon solvents yields $W_2(O_2CEt)_4$ and dibenzyl by W-C bond homolysis. The ¹H NMR spectrum of W₂(CH₂Ph)₂- $(O_2CEt)_4$ was, however, not reconcilable with a structure analogous to that of $W_2Me_2(O_2CNEt_2)_4$.⁹ Consequently, we resorted to a single-crystal X-ray diffraction study which revealed¹⁰ the mo-lecular structure shown in Figure 1. The structure is consistent with the NMR data but is quite unexpected in view of the previously established geometries for d^3-d^3 dimers of tungsten. The W-W distance and the parameters of the central $W_2(O_2C)_4$ core are essentially identical with those seen in $W_2(O_2CEt)_4$,⁸ which, being a d^4-d^4 dimer, has a quadruple bond. The W-W distance is ca. 0.1 Å shorter than that in $W_2Me_2(O_2CNEt_2)_4$ and shorter than any seen before for a tungsten d³-d³ dimer. The W-C distance is the same as the Mo-C distance in Mo₂(CH₂Ph)₂- $(NMe_2)_4$.

⁽⁴⁾ Jackson, R. B.; Streib, W. E. Inorg. Chem. 1971, 10, 1760.
(5) See: Cotton, F. A.; Wilkinson, G. "Advanced Inorganic Chemistry", 4th ed.; Wiley: New York, 1980; pp 864-866 and references cited therein.

⁽⁶⁾ The X₃M≡MX₃ molecules have been the subject of numerous theoretical studies: Dobbs, K. W.; Francl, M. H.; Hehre, W. J. Inorg. Chem. 1984, 23, 24. Ziegler, T. J. Am. Chem. Soc. 1983, 105, 7543. Kok, R. A.; Hall, M. B. Inorg. Chem. 1983, 22, 728. Bursten, B. E.; Cotton, F. A.; Green, J. C.; Seddon, E. A.; Stanley, G. J. Am. Chem. Soc. 1980, 102, 4579. Hall, M. B. L. Chem. Chem. Con. 102, 102, 2014. B. J. Am. Chem. Soc. 1980, 102, 2104. Dedieu, A.; Albright, T. A.; Hoffmann, R. J. Am. Chem. Soc. 1979, 101, 3141. Albright, T. A.; Hoffmann, R. J. Am. Chem. Soc. 1977, 100, 7736. (7) Chisholm, M. H.; Cotton, F. A.; Extine, M. W.; Stults, B. R. Inorg.

Chem. 1977, 16, 603.

⁽⁸⁾ Chisholm, M. H.; Chiu, H. T.; Huffman, J. C. Polyhedron. 1984, 3, 759.

⁽⁹⁾ Satisfactory elemental analyses have been obtained. ¹H NMR data obtained from benzene- d_6 solutions at +21 °C for W₂(CH₂Ph)₂(O₂CEt)₄: benzyl CH₂ δ 3.64, J_{WH} = 13.7 Hz; proprionate CH₂ δ 2.77, quartet; CH₃ δ 0.88, triplet, J_{HH} = 7.6 Hz.

^{0.88,} triplet, $J_{\text{HH}} = 7.6$ HZ. (10) Crystal data for W₂(CH₂Ph)₂(OCEt)₄ at -157 °C: a = 10.877 (5) Å, b = 8.414 (3) Å, c = 15.153 (7) Å, $\beta = 94.65$ (3)°, Z = 2, $d_{\text{calcd}} = 2.024$ g cm⁻³, and space group P₂₁/c; $R_{\text{F}} = 0.035$ and $R_{\text{wF}} = 0.036$. For W₂-(CH₂-t-Bu)₂(O₂CEt)₄ at -158 °C: a = 12.141 (8) Å, b = 9.133 (5) Å, c = 7.37 (4) Å, $\alpha = 63.06$ (3)°, $\beta = 101.85$ (4)°, $\gamma = 80.47$ (4)°, z = 1, $d_{\text{calcd}} = 1.957$ g cm⁻³, and space group P₁; $F_{\text{F}} = 0.059$ and $R_{\text{w}}^{\text{F}} = 0.062$.

Lest the present structure be anomalous because of some unique property of the benzyl ligand, we prepared the related neopentyl compound. A single crystal X-ray diffraction study¹⁰ revealed a similar centrosymmetric structure with W–W = 2.187 (2) Å, W–C = 2.21 (2) Å, W–O = 2.08 (1)° (averaged), and W–W–C = 169.7(4)°.

Several questions are raised by these findings, in particular: (1) For a molecule of formula $W_2R_2(O_2CX)_4$, what factors favor the adoption of a structure akin to that seen for R = Me and $X = NEt_2$ vs. $R = CH_2$ -t-Bu or CH₂Ph and X = Et? (2) Why should strong axial ligation of neopentyl or benzyl groups result in a shortening of the W=W bond?

The latter effect is just the opposite of what has been observed in the chemistry of M-M quadruple bonds¹ and is contraintuitive. The formation of a triple bond in the present d³-d³ dimers may be viewed in the context of combining two ML₅ fragments.¹¹ This leads one to anticipate a triple bond of configuration $\pi^4 \delta^2$, rather than $\sigma^2 \pi^4$, as shown in Figure 2. The $\pi^4 \delta^2$ configuration is further supported by extended Hückel (EH) calculations for the model system W₂(O₂CH)₄R₂, where R = H or Me.¹²

Although qualitative MO theory predicts a $\pi^4 \delta^2$ configuration,¹³ we cannot rule out a $\pi^4 \sigma^2$ configuration in which σ has dropped

(13) The M-M triple bond of configuration $\pi^4 \delta^2$ was predicted previously for d^3-d^3 dimers such as $\text{Re}_2\text{Cl}_{10}^{2^-}$ formed by the coupling of two ML₅ fragments: Hoffmann, R.; Shaik, S.; Fisel, C. R.; Summerville, R. J. Am. Chem. Soc. 1980, 102, 4555.

below δ in Figure 2. A $\pi^4 \sigma^2$ configuration would readily explain the shortness of the W-W bond. As measured by the W-W overlap population (a measure of bonding), EHMO calculations show the σ W-W bonding MO of W₂(O₂CH)₄Me₂ to be more W-W bonding than the σ bond in W₂(O₂CH)₄($\sigma^2\pi^4\delta^2$). The σ MO in W₂(O₂CH)₄Me₂ is more bonding because S and p_z mix with d_{z²} in such a way as to enhance the W-W bonding and decrease the W-C antibonding. Thus, according to the calculations, the W-W overlap population in W₂(O₂CH)₄Me₂ with a $\pi^4\sigma^2$ configuration is roughly the same as in W₂(O₂CH)₄ with a $\sigma^2\pi^4\delta^2$ configuration. The mixing of metal d_{z²} and p_z orbitals has been noted before in many dimers of the later transition elements, particularly the d⁸-d⁸ dimers of Rh(I) and Pt(II) where, if only d_{z²-d_{z²} interactions are considered, a nonbonding or repulsive interaction is expected: $\sigma^2\sigma^{*2}$.^{14,15}}

Finally we note that the linear C-W=W-C unit results in σ molecular orbitals that mix W-C and W-W bonding. Consequently, to represent the W-W configuration as either $\pi^4 \delta^2$ or $\pi^4 \sigma^2$ is only an approximation. Further studies are in progress.¹⁶

Supplementary Material Available: Fractional coordinates, thermal parameters, and atom number schemes for W_2 -(CH₂Ph)₂(O₂CEt)₄ and W_2 (CH₂-*t*-Bu)₂(O₂CEt)₄ (4 pages). Ordering information is given on any current masthead page.

Additions and Corrections

Stereospecific Reactions of Nucleophilic Agents with Acetylenes and Vinyl-Type Halides. VII [J. Am. Chem. Soc. 1958, 80, 1916]. WILLIAM E. TRUCE* and RUDOLPH KASSINGER

The oxidation product from tris(*p*-tolymercapto)ethene is bis(*p*-tolylsulfonyl)methane and *not* the trisulfone.

Hydrogen Atom Transfer Reactions: The Nature of the Transition State As Delineated from the Temperature Dependence of the Primary KIE [J. Am. Chem. Soc. 1983, 105, 6526–6528]. HENRY L. STRONG, MARILYN L. BROWNAWELL, and JOSEPH SAN FILIPPO, JR.*

Page 6527, Table I: Entry 11 in which now reads p-CH₃C₆H₄CH₂Cl should read p-CH₃OC₆H₄CH₂Cl.

Total Synthesis of Vineomycin B₂ Aglycon [J. Am. Chem. Soc. 1984, 106, 2453]. SAMUEL J. DANISHEFSKY,* BIING JIUN UANG, and GEORGE QUALLICH

Page 2454, second line: A yield is reported as 8%. In fact, this should be shown as 84%.

Reactivity of Free Cyclopentadienone in Cycloaddition Reactions [J. Am. Chem. Soc. 1984, 106, 2077]. F. GAVIÑA,* A. M. COSTERO, P. GIL, and S. V. LUIS

Page 2078, Table I: Compound VIII appears as

$$P$$
 — CH_2O_2C — $HC = CH - CO_2H - CO_2H$

Obviously, it should be

300-MHz ¹H NMR Study of Parabactin and Its Gallium(III) Chelate [J. Am. Chem. Soc. 1984, 106, 3089]. RAYMOND J. BERGERON* and STEVEN J. KLINE

Page 3098: The following should be added.

Acknowledgment. We would like to acknowledge the National Institutes of Health Grant AM-29936 and the Veterans Administration for their support.

Structures and Conformation of Dihydro Aromatic Compounds. 3. Cis- and Trans-Disubstituted 1,4-Dihydrobenzenes, 1,4-Dihydronaphthalenes, and 9,10-Dihydroanthracenes [J. Am. Chem. Soc. 1984, 106, 3119]. P. W. RABIDEAU,* K. B. LIPKOWITZ,* and R. B. NACHBAR, JR.

Page 3122: Figures 5 and 6 should have their captions exchanged.

It should be added that the transition-state state structures for *trans*-9,10-di-*tert*-BuBHA were calculated without constraints with the program BIGSTRN-3 (R. B. Nachbar, Jr., and K. Mislow, to be submitted to QCPE) using Allinger's MM2 force field (N. L. Allinger and Y. H. Yuh, QCPE, 1981, 13, 395), and were characterized by a singel imaginary frequency.

Intramolecular Alkoxypalladation/Carbonylation of Alkenes [J. Am. Chem. Soc. 1984, 106, 1496–1498]. M. F. SEMMELHACK* and CHRISTINA BODUROW

Page 1497, Table I, entry 4: the product is drawn incorrectly; it should be

Regioselectivity and Rearrangement upon Addition of Nucleophiles to (Diene)iron Complexes [J. Am. Chem. Soc. 1984, 106, 2715–2717]. M. F. SEMMELHACK* and HANH T. M. LE

Page 2715: Structures 3 and 18 were redrawn with a misleading representation of the allyl ligands, in Scheme I. That scheme

⁽¹¹⁾ Elian, M.; Hoffmann, R. Inorg. Chem. 1975, 14, 1058.

⁽¹²⁾ Extended Hückel calculations with weighted Hij's were used: Hoffmann, R. J. Chem. Phys. 1963, 39, 1397. Hoffmann, R.; Lipscomb, W. N. Ibid. 1962, 36, 2179; 1962, 37, 2872. Ammeter, J. H.; Burgi, H. B.; Thiebault, J. C.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 3686. The tungsten parameters are from Kubacek, P.; Hoffmann, R. J. Am. Chem. Soc. 1981, 103, 4320.

⁽¹⁴⁾ Balch, A. L. A.S.C. Symp. Ser. 1981, 155, 167 and references therein.
(15) Mann, K. R.; Lewis, N. S.; Williams, R. M.; Gray, H. B.; Gordon, J. G., II Inorg. Chem. 1978, 17, 828. Lewis, N. S.; Mann, K. R.; Gordon, J. G., II; Gray, H. B. J. Am. Chem. Soc. 1976, 98, 7461. Mann, K. R.;

J. G., II, Gray, H. B. J. Am. Chem. Soc. 1976, 98, 7461. Mann, K. R.; Gordon, J. G., II; Gray, H. B. J. Am. Chem. Soc. 1975, 97, 3553. (16) We thank the National Science Foundation and the Wrubel Computing Center for support.